
Galerkin approximations to static and dynamic localization
problems

M.K. Wadeea,*, Y. Higuchib, 1, G.W. Huntc

aSchool of Engineering and Computer Science, University of Exeter, North Park Road, Exeter Devon EX4 4QF, UK
bTechnology Research Center, Taisei Corporation, 344-1 Nase-cho Totsuka-ku, Yokohama, 245, Japan

cDepartment of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK

Received 26 February 1998; in revised form 10 February 1999

Abstract

A new Galerkin-type procedure is established which, unlike the classical approach, does not rely on the ®nal
shape being composed of linearly independent modes. The procedure is applied to the evolution of a localized
buckle of a thin elastic strip within a visco-elastic medium. Unlike the related elastic problem, no clear-cut linear
eigenvalues exist to model wavelength and exponential growth/decay in the tails of the buckle pattern. The new

procedure introduces variables to measure these e�ects, and allows them to change in time. This results in a more
natural evolutionary process than with ®xed mode shapes. Analysis is run within an algebraic manipulator (MAPLE)
and checked against that of a numerical boundary-value solver (COLPAR). # 2000 Elsevier Science Ltd. All rights

reserved.

1. Introduction

In parallel with developments in other areas of mechanics and applied mathematics (Champneys et
al., 1997), the analysis of buckle pattern localization is fast emerging as an important area of study in
structural mechanics. Special techniques are often required, tuned speci®cally to describing the
inherently nonlinear and non-unique responses that result. Methods range from analytical (e.g.
perturbation) methods, through part numerical and part analytic (Wadee et al., 1997), to fully numerical
methods (Champneys and Toland, 1993). Typical applications are to embedded strut, plate and shell
problems, with emerging interest in the ®eld of structural geology.
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Formulations for such problems must involve at least one independent spatial variable x, which can
sometimes usefully be interpreted in a dynamical sense as time t (Hunt et al., 1989), whereupon the
system appears as reversible and usually hamiltonian. In the modelling of geological systems, however,
real time also enters the frame, and underlying governing equations become partial di�erential (PDEs)
in space and time, rather than ordinary di�erential (ODEs) just in space. Analytical equipment that is
useful for the latter is not necessarily available in the context of the former. In particular, in the
archetypal case of an embedded strut, linear eigenvalue information suggests a modulated periodicity
that de®nes both wavelength and exponential growth/decay in the tails of a localized solution
(henceforth collectively referred to as shape factors ) (Wadee et al., 1997). In the geological setting, such
information is not readily available from the linearized PDE.

Available analytical techniques are also liable to be more restricted in the case of PDEs. Variational
approaches such as the Rayleigh±Ritz method, which might work well for an elastic system, have no
immediate counterparts in the corresponding dissipative, viscous or visco-elastic, context of geology.
Galerkin procedures, based on underlying di�erential equations, face less restriction, but by comparison
also appear less ¯exible.

As an example, we compare here two models, one describing an elastic strut supported by a nonlinear
elastic (Winkler) medium and leading to an ODE, and the other in which the support is replaced by a
nonlinear visco-elastic medium and leading to a PDE. For the ®rst problem, changing the load alters the
form of the buckle pattern; we compare two Galerkin procedures, one in which the linear eigenvalue
information is utilized directly, and one for which the shape factors are introduced as free variables and
allowed to choose themselves via the minimization of excess energy. The latter involves an extension of
the Galerkin principle to modes which are no longer linearly independent, and gives results that agree
directly with those of a recent Rayleigh±Ritz formulation of the same problem (Wadee et al., 1997). For
the visco-elastic problem, the time dimension again leads in general to buckle patterns that are liable to
alter shape. Now however no eigenvalue information exists to guide the choice of trial functions;
wavelengths and growth/decay can either be treated as arbitrarily constant, or as with the elastic
problem be given the status of variables in the new Galerkin procedure. In this last example there is no
Rayleigh±Ritz counterpart for comparison. In all cases we compare against numerically-obtained
solutions found using the boundary value solver COLPAR.

For systems that display localized shapes, Galerkin and related procedures such as are developed here
have clear potential. Unlike asymptotic double-scale results, they are capable of representing the
de¯ected shape over entire load ranges, well away from any point of expansion for example. This is
particularly useful for modelling geological systems, where forces due to tectonic compression dissipate
over time. In this context, the ability of a Galerkin model to discover for itself the wavelength and
growth/decay characteristics in the tails of a modulated harmonic function is undoubtedly a useful
feature.

2. Static model: the ODE

To develop and test the performance of a Galerkin method suitable for the study of buckle pattern
localization, we start with the derivation of a well known static model (Potier-Ferry, 1983).
Comparisons will be with independently obtained numerical solutions.

2.1. Derivation of the formulation from a variational principle

Consider the total potential energy functional, V, of a strut with bending sti�ness EI of inde®nite
length lying on an elastic (Winkler) foundation with a softening cubic nonlinearity with restoring force

M.K. Wadee et al. / International Journal of Solids and Structures 37 (2000) 3015±30293016



per unit length F=kyÿcy 3 where k and c are positive constants. The strut has a compressive axial force
acting on it which maintains its magnitude and direction throughout all deformations but may be
parametrically varied (Fig. 1). After nondimensionalizing (i.e. putting EI=k=c = 1), and considering
only ®rst-order bending and work-done-by-load terms, the total potential energy is (Thompson and
Hunt, 1973)

V �
�1
ÿ1

�
1

2
y 00 2 ÿ 1

2
Py 0 2 � 1

2
y2 ÿ 1

4
y4
�

dx �1�

where a prime indicates di�erentiation with respect to x. The ®rst term is the strain energy of bending,
the second is the work done by the load P and the remainder are energy stored in the elastic
foundation. The integrand can be treated as a spatial Lagrangian, L( y, y ', y0), of the system.
Equilibrium is given by stationary values of the integral. Performing the calculus of variations on (1)
gives (Wadee et al., 1997)
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the integrand of which contains the Euler±Lagrange equation for the system, in this case given by
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The term in square brackets accounts for conditions at the boundaries and disappears when we consider
localized solutions the envelopes of which decay exponentially for large vxv. We are left with�1
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Eq. (3) has a critical point at PC=2 where the ¯at fundamental state loses stability at an unstable-
symmetric point of bifurcation and encounters equilibrium paths corresponding to buckled states of the
strut (Thompson and Hunt, 1973). Approximate solutions can be obtained using classical perturbation
techniques, and can be either periodic or localized in form.

2.1.1. The traditional Galerkin method
The traditional Galerkin procedure (Fox, 1987) may be seen as being derived from Eq. (2) by

assuming that the modes which go to make up y are given by

Fig. 1. A strut resting on an elastic foundation.
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y �
Xn
i�1

Aifi�x� �5�

where each Ai is an undetermined constant amplitude of each shape function, fi. If dy in (4) is replaced
in turn by (@y/@Ai )dAi we get n integral equations of the form,�1

ÿ1
f y 0000 � Py 00 � yÿ y3gfi dx � 0: �6�

The traditional Galerkin method is thus recovered. The coe�cient dAi has been removed since it is
arbitrary and we are only considering the ®rst (weak) variation of V. Depending on the form of y in (5),
we can perform periodic or localized buckling analyses of the strut. Whiting (1997) performed the latter
using the following assumed form

y � A1sechax cos bx� A2sechax tanh ax sin bx� A3sech3ax cos bx� A4sech3ax tanh ax sin bx: �7�
This expression was developed from a double-scale perturbation analysis (Wadee et al., 1997). The
variables a and b are related to the degree of localization and wavelength of the de¯ection pattern. A
good approximation is to assume that they are given by
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where2a2ib are the four eigenvalues of the linearized di�erential equation.

2.1.2. The modi®ed Galerkin method
The above is shown by Whiting (1997) to give good results apart from a small range of P near the

critical point PC. This is despite the fact that the parameters a and b are functions of P only. A further
development in a Rayleigh±Ritz context is to allow a and b to act as generalized coordinates as well as
the Ais (Wadee et al., 1997). Even though the `modes' are no longer linearly independent this can be
directly translated into a Galerkin procedure; the integrand (4) still holds but expressions (@y/@a )da and
(@y/@b )db, namely

da
�1
ÿ1
f y 0000 � Py 00 � yÿ y3g@y
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dx � 0
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�1
ÿ1
f y 0000 � Py 00 � yÿ y3g@y
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now must be included. This leads to more complicated integrals which nevertheless can be evaluated in
closed form by the technique of contour integration (Stephenson and Radmore, 1990). In the current
study, use is made of the algebraic manipulation software MATHEMATICA (Wolfram Research Inc., 1995)
and MAPLE (Waterloo Maple Inc., 1996). The resulting six nonlinear algebraic equations are then solved
numerically using a six-dimensional Newton±Raphson technique (Press et al., 1992). The improvement
over the traditional Galerkin procedure can be gauged by comparing the average (squared) residual
de®ned by
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where

R � y 0000 � Py 00 � yÿ y3: �10�
Fig. 2 shows the favourable comparison of this new Galerkin procedure with the classical form over the
entire post-buckling response. A corresponding improvement in the plot of load P to ®rst-order end
shortening, E, de®ned by

E � 1

2

�1
ÿ1

y 0 2 dx, �11�

is shown in Fig. 3 (c.f. Whiting, 1997). Here and henceforth we shall refer to the original Galerkin
method as G1 and the modi®ed method as G2.

A point worth emphasizing is that the conventional Galerkin analysis gives identical results to those
of a localized Rayleigh±Ritz analysis when a and b are the same functions of P, while this enhanced
analysis again repeats the Rayleigh±Ritz results with a and b being treated as generalized coordinates
and allowed to choose themselves. Both forms of Rayleigh±Ritz modelling appear in Wadee et al.
(1997). Variations of a and b for each are as shown in Fig. 4. As outlined in that paper, both Galerkin
and Rayleigh±Ritz methods derive from the same variational principle with simply the order of
di�erentiation and integration being swapped. The exact equivalence when the modes are not linearly
independent is, to the best of our knowledge, reported here for the ®rst time.

2.2. Comparison with independent numerical solutions

Figs. 2 and 3 show that the modi®ed Galerkin method performs consistently better than the original
method. To obtain numerical solutions to Eq. (3) we employed the collocation software COLNEW
(Ascher et al., 1995). This is a boundary-value solver requiring appropriate boundary conditions. We
utilize a known symmetry in the primary localized solution, associated with the underlying reversibility
of the equation (Champneys, 1994), by taking one boundary (x = 0) to be at the centre of localization
under the symmetric section condition y '=y1=0 (Hunt et al., 1989). Solutions are then obliged to be
symmetric about the y-axis. The other boundary condition is taken to be the linearized stable manifold

Fig. 2. Graphs of P vs Rav for the traditional (dashed line) and modi®ed (solid line) Galerkin methods.
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i.e. the solution to the linearized equation which converges on y=0 as x41 (Hunt and Wadee, 1991).
Whatever boundary condition is actually in place, this gives a good approximation to the localized
response as de¯ection becomes small and decays towards the ¯at state. Favourable comparison of the
de¯ections at three widely-ranging load values is shown in Fig. 5. Further evidence for the accuracy of
the Galerkin results is shown in the graph of central de¯ection vs P for the entire post-buckling range
(Fig. 6).

3. Dynamic model: the PDE

The Galerkin modi®cations of the previous section derive from a variational principle. The next
problem to be examined using this method is that of a visco-elastic system in which the long-term
buckling behaviour is triggered by an initial elastic phase followed by viscous dissipation in time (Hunt
et al., 1996). This dynamic process models folding of geological strata under high temperature and
pressure (Hunt et al., 1997).

No variational principle is available in the derivation of the PDE but the Galerkin formulation still

Fig. 3. End shortening for the elastic strut on an elastic foundation found using numerical and Galerkin approaches. Thick line:

numerical solution. Dashed line: solution using G1. Thin line: solution using G2.

Fig. 4. Variation of a and b with load, P, for the strut on an elastic foundation (3). Thin line: values taken from the linearized

eigenvalues (8). Thick line: values found by method G2.
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gives improved results as shown below. The governing equation in y(x, t ), taken directly from Hunt
et al. (1996)

@
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@ 2y
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� yÿ y3

�
� @4y

@x4
� P

@2y

@x2
� 0, �12�

is appropriate for an elastic strut supported by a nonlinear Winkler foundation that comprises springs
and dashpots in series. Depending on the prevailing loading conditions, the load parameter P can vary

Fig. 5. Localized de¯ection pro®les of Eq. (3) for the load values shown. The di�erence between numerical and Galerkin solutions

cannot be discerned.
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with time. In the current study, we shall assume that the system is held under constant end-shortening
(rigid loading) (dE/dt=0). An alternative might be to assume that the rate of change of end shortening
were constant, or indeed that dP/dt = 0 (dead loading). The point to note is that P and E are not
independent.

A key di�erence between this model and the static one of the previous section is that the elastic case
has localization characteristics (i.e. a and b ) derivable from the linear eigenvalues of the governing
ODE. Good results are obtained either by assuming that these are given by (8) or by adopting them as
initial guesses and allowing a and b to vary as generalized coordinates using simple continuation. In the
visco-elastic case no such guidance exists. It is true that the initial de¯ection is governed by the elastic
properties of the strut and foundation but, with evolution in time, the energy-absorbing (viscous)
properties of the foundation will a�ect the shape factors a and b. As the traditional Galerkin technique
(G1) allows only the amplitudes of the mode shapes to vary, a method that allows a and b also to vary
is highly desirable.

3.1. Solution procedure for the Galerkin methods

Method G2 developed above o�ers no improvement over the full Rayleigh±Ritz analysis of Wadee
et al. (1997) for the elastic case but has the advantage that it can be applied to the non-
conservative problems of visco-elasticity. To do this, the modal form of y in (7) is substituted into
(12) and the left-hand side is treated as the residual. The generalized coordinates, Ai, a and b, are
assumed to be functions of time. Each integral (4) is then evaluated in closed form for each (@y/@A1)dA1,
(@y/@A2)dA2, . . . , (@y/@b )db which gives six algebraic equations. We ensure that end shortening is held
constant by insisting on the condition dE/dt= 0. The seven equations thus formed are linear in dA1/dt
etc. and dP/dt and may be solved by matrix inversion. A ®nite-di�erence relationship is then used to
®nd the values at the next time step, viz.

A1�t� Dt� � A1�t� � dA1

dt

����
t

Dt: �13�

Fig. 6. Graphs of central de¯ection, y(0), vs P for primary localized buckling solutions of (3). Continuous line: numerical solution.

Discrete points: Galerkin method G2.
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3.2. Discretization of time for numerical solutions

In order to solve (12) numerically using available software, it is transformed into a set of ODEs in
space with the time dimension being discretized using a backward di�erence scheme with a step size of
Dt. The process yields a set of ODEs in yn(x ) where n denotes the de¯ection at time nDt,

y 0000n � Pny
00
n �

yn ÿ y3n
1� Dt

� y 0000nÿ1 � Pnÿ1y 00nÿ1 � ynÿ1 ÿ y3nÿ1
1� Dt

: �14�

The software used to solve this discretized system for constant end shortening was COLPAR (Bader and
Kunkel, 1989)Ða descendent of COLNEW that allows constraints to be included. The boundary
conditions used to solve (14) were the same as for the elastic case, i.e. the symmetric section at x = 0
and the linearized stable manifold at x1 100.

The initial response, y0(x ) is assumed to be that of an elastic strut precisely of the form given in
section 2. The justi®cation is that we are attempting to model folding of strata which is initiated by
some disturbance that takes place instantaneously (in comparison with geological time scales). In all
calculations, we have used Dt=0.01 and P0=1.97.

3.3. Linear PDE with localized triggering mode

The assumption of an initial localized mode is made on the grounds that the initiation of geological
folding occurs quickly when compared with the subsequent process of viscous dissipation. Under
conditions of constant end shortening, the de¯ection grows moderately compared with, say, growth
under dead loading conditions (dP/dt= 0). It has recently been shown by Budd et al. (1999) that, even
in the case of a purely viscous linear foundation, the imposition of the constant-end-shortening
constraint (11) is su�cient to cause buckle patterns to localize; the constraint itself is enough of a
nonlinearity to promote such behaviour. We therefore also examine the linear visco-elastic PDE (12),
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� @4y
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@2y
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It may be sensible to allow such a system to trigger in the form of a localized buckle by including an
initial nonlinearity, but then allow the pro®le to evolve according to the linear equation.

3.4. Comparisons of the Galerkin formulations

3.4.1. Results for the nonlinear PDE
The plot of average residual vs time is shown in Fig. 7 for the two schemes and shows that, as for the

elastic system, the residual for G2 is smaller than for the G1.
Comparisons of the de¯ected shape between the two Galerkin approaches and numerical solutions are

shown in Figs. 8 and 9 for the values of t shown. For t < 10, results for both the weighted residual
methods are close to the numerical solution but G2 performs better than G1 in the tails of the
localization. The shape factors a and b chosen are dependent on the load at the initial elastic state of
the system (in this case, P(0)=1.97). As the load changes during evolution, so do the wavelength and
rate of decay of the de¯ection pattern (see Figs. 8 and 9). Unlike for the ODE, it is not possible to
calculate appropriate new values for the shape factors with change in load.

Method G2 performs consistently better but does not follow the numerical solution closely beyond
about t = 15. A drift in the phase with x of the solutions is also apparent for larger t, although again
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Fig. 7. Variation with time of the average residual for PDE (12). Dashed line: method G1. Solid line: method G2.

Fig. 8. Evolution of a localized de¯ection for P(0)=1.97 for (12). Thick line: numerical solution. Thin line: solution using G2.

Dashed line: solution using G1.
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Fig. 9. Further evolution of the de¯ection pattern (continuation from Fig. 8).

Fig. 10. Graph of change of load vs time for Eq. (12) under conditions of rigid loading. Thick line: numerical solution. Thin line:

solution with method G2. Dashed line: solution with method G1.
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the discrepancy is smaller for the newer scheme. Further evidence for the improved performance can be
seen in the comparison of P(t ) vs t in Fig. 10 where graphs for the collocation solution and the newer
Galerkin method only start to diverge signi®cantly after about t=15. Even after this time, although the
comparisons are less good, the newer method does preserve some semblance of agreement with the
numerical solution because the decay of amplitude is recalculated at each time step. Fig. 11 shows the
variation of central de¯ection with time. According to the numerical solution, the de¯ection increases
monotonically with time a feature that is reproduced in method G2. With G1, however, the central
de¯ection starts to decrease after about t= 5. To achieve better accuracy in general for the PDE, more
modes need to be used to approximate y. It is at present unclear which further modes would be
appropriate, since the original choices were based on an elastic phase; there is no clear guarantee that
extra such modes would be appropriate. Nevertheless, the ability to treat a and b as generalized
coordinates is seen to provide signi®cant extra freedom to the modelling process.

3.4.2. Results for the linear PDE
Eq. (15) is solved using the modi®ed Galerkin method and using the collocation software.

Comparisons are qualitatively similar to the nonlinear case. In particular, as in Fig. 11, the monotonic
increase of the central de¯ection with time can be seen (Fig. 12). Both the numerical method and our
extended Galerkin method pick this behaviour out whereas the original method predicts that this ®rst
rises and then falls. The load vs time graph (Fig. 13) shows that the Galerkin method remains close to
the numerically-obtained results (Fig. 12). Fig. 14 shows the direct comparison of numerical and G2
solutions at t=20.00 and t=30.00.

4. Conclusions

Primary localized solutions, i.e. those whose amplitude envelope has a single peak, are a class of
buckling solutions which are of practical and analytical importance in structural mechanics. In the
elastic system, localized de¯ection is reminiscent of solitary-wave type solutions encountered in ¯uid
mechanics (Champneys et al., 1997). Both Rayleigh±Ritz and Galerkin techniques have been previously
used successfully to ®nd such behaviour in the subcritical parameter range (Whiting, 1997; Wadee et al.,
1997). An important development reported here is the application of the latter to a parabolic PDE

Fig. 11. Graph of central de¯ection vs time for (12). Thick line: numerical solution. Thin line: solution with method G2. Dashed

line: solution with method G1.

M.K. Wadee et al. / International Journal of Solids and Structures 37 (2000) 3015±30293026



describing the behaviour of a thin elastic layer resting in a visco-elastic medium modelling a geological
folding process (Hunt et al., 1996). The extra independent time variable causes di�culty because it
means that the system is no longer conservative and so the hamiltonian nature of the elastic problem is
not preserved and the de¯ection pattern of the elastic layer is history-dependent. When the layer is long,
the boundary conditions play a small roÃ le in determining the overall pro®le but the loading conditions
have profound e�ects. In the case studied here, we have dealt solely with rigid loading i.e. the end-
shortening, E, has been held constant for all t.

The initial triggering mode has been chosen to be localized because the initiation of the folding of the
layer is assumed to be e�ectively instantaneous (in terms of a geological time scale) and, perhaps not
surprisingly, the pattern continues to be localized for all time given that E=constant. However, there is
evidence that even a periodic initial pro®le eventually leads to localization (Budd and Peletier, 1999).

The Galerkin method has been extended in a way that the assumed solution need not be linear
superpositions of modes. When applied to the study of the ODE, the method proves to be very good
when compared against numerical solutions. In the study of the parabolic PDE, the results are less
accurate far into the time evolution of the buckle pattern but are nevertheless clearly better than
previous studies particularly in comparison with the standard Galerkin technique. Whereas in the elastic
problem an adequate approximation to the solution can be reached through the properties of the

Fig. 12. y(0, t ) vs t for the linear PDE (15). Thick line: numerical solution. Thin line: solution using G2.

Fig. 13. P vs t for the linear PDE (15). Thick line: numerical solution. Thin line: solution using G2.
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eigenvalues of the linearized governing equation (Whiting, 1997), in the visco-elastic problem,
information about the shape factors is not available and a weighted residual method has been developed
where such parameters can be treated as variables too.

In the current systems we were able to compare solutions with a collocation method which provides a
useful validation procedure. Our aim is to proceed to analyse systems which are more closely related to
geological folding where the assumption of a Winkler foundation in the model is at best dubious. Shear
interaction is known to occur in the bedding of strata and so should be included. However, this adds an
integral constraint on the system which cannot be solved using collocation. The modi®ed Galerkin
procedure provides a possible avenue for analysing the half space problem.
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Fig. 14. Evolution of a localized de¯ection for P(0)=1.97 for (15). Thick line: numerical solution. Thin line: solution using G2.
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